AskDefine | Define seafowl

Dictionary Definition

seafowl n : a bird that frequents coastal waters and the open ocean: gulls; pelicans; gannets; cormorants; albatrosses; petrels; etc. [syn: seabird, sea bird]

Extensive Definition

Seabirds are birds that have adapted to life within the marine environment. While seabirds vary greatly in lifestyle, behaviour and physiology, they often exhibit striking convergent evolution, as the same environmental problems and feeding niches have resulted in similar adaptations. The first seabirds evolved in the Cretaceous period, and modern seabird families emerged in the Paleogene.
In general, seabirds live longer, breed later and have fewer young than other birds do, but they invest a great deal of time in their young. Most species nest in colonies, which can vary in size from a few dozen birds to millions. Many species are famous for undertaking long annual migrations, crossing the equator or circumnavigating the Earth in some cases. They feed both at the ocean's surface and below it, and even feed on each other. Seabirds can be highly pelagic, coastal, or in some cases spend a part of the year away from the sea entirely.
Seabirds and humans have a long history together: they have provided food to hunters, guided fishermen to fishing stocks and led sailors to land. Many species are currently threatened by human activities, and conservation efforts are under way.

Classification of species as seabirds

There exists no single definition of which groups, families, and species are seabirds, and most definitions are in some way arbitrary. In the words of two seabird scientists, "The one common characteristic that all seabirds share is that they feed in saltwater; but, as seems to be true with any statement in biology, some do not." However, by convention all of the penguins and Procellariiformes, all of the Pelecaniformes except the darters, and some of the Charadriiformes (the skuas, gulls, terns, auks and skimmers) are classified as seabirds. The phalaropes are usually included as well, since although they are waders ("shorebirds" in North America), two of the three species are oceanic for nine months of the year, crossing the equator to feed pelagically.
Loons and grebes, which nest on lakes but winter at sea, are usually categorised as water birds, not seabirds. Although there are a number of sea ducks in the family Anatidae which are truly marine in the winter, by convention they are usually excluded from the seabird grouping. Many waders (or shorebirds) and herons are also highly marine, living on the sea's edge (coast), but are also not treated as seabirds.

Evolution and fossil record

Seabirds, by virtue of living in a geologically depositional environment (that is, in the sea where sediments are readily laid down), are well represented in the fossil record. but had a beak filled with sharp teeth.
While Hesperornis is not thought to have left descendants, the earliest modern seabirds also occurred in the Cretaceous, with a species called Tytthostonyx glauconiticus, which seems allied to the Procellariiformes and/or Pelecaniformes. In the Paleogene the seas were dominated by early Procellariidae, giant penguins and two extinct families, the Pelagornithidae and the Plotopteridae (a group of large seabirds that looked like the penguins). Modern genera began their wide radiation in the Miocene, although the genus Puffinus (which includes today's Manx Shearwater and Sooty Shearwater) might date back to the Oligocene. The highest diversity of seabirds apparently existed during the Late Miocene and the Pliocene. At the end of the latter, the oceanic food web had undergone a period of upheaval due to extinction of considerable numbers of marine species; subsequently, the spread of marine mammals seems to have prevented seabirds from reaching their erstwhile diversity.


Adaptations to life at sea

Seabirds have made numerous adaptations to living on and feeding in the sea. Wing morphology has been shaped by the niche an individual species or family has evolved, so that looking at a wing's shape and loading can tell a scientist about its life feeding behaviour. Longer wings and low wing loading are typical of more pelagic species, whilst diving species have shorter wings. Species such as the Wandering Albatross, which forage over huge areas of sea, have a reduced capacity for powered flight and are dependent on a type of gliding called dynamic soaring (where the wind deflected by waves provides lift) as well as slope soaring. Seabirds also almost always have webbed feet, to aid movement on the surface as well as assisting diving in some species. The Procellariiformes are unusual amongst birds in having a strong sense of smell, which is used to find widely distributed food in a vast ocean, and possibly to locate their colonies.
Salt glands are used by seabirds to deal with the salt they ingest by drinking and feeding (particularly on crustaceans), and to help them osmoregulate. The excretions from these glands (which are positioned in the head of the birds, emerging from the nasal cavity) are almost pure sodium chloride. With the exception of the cormorants and some terns, and in common with most other birds, all seabirds have waterproof plumage. However, compared to land birds, they have far more feathers protecting their bodies. This dense plumage is better able to protect the bird from getting wet, and cold is kept out by a dense layer of down feathers. The cormorants possess a layer of unique feathers that retain a smaller layer of air (compared to other diving birds) but otherwise soak up water. This allows them to swim without fighting the buoyancy that retaining air in the feathers causes, yet retain enough air to prevent the bird losing excessive heat through contact with water.
The plumage of most seabirds is less colourful than that of land birds, restricted in the main to variations of black, white or grey. Many of these do not ever land in the water, and some, such as the frigatebirds, have difficulty getting airborne again should they do so. Another seabird family that does not land while feeding is the skimmer, which has a unique fishing method: flying along the surface with the lower mandible in the water—this shuts automatically when the bill touches something in the water. The skimmer's bill reflects its unusual lifestyle, with the lower mandible uniquely being longer than the upper one.
Surface feeders that swim often have unique bills as well, adapted for their specific prey. Prions have special bills with filters called lamellae to filter out plankton from mouthfuls of water, and many albatrosses and petrels have hooked bills to snatch fast-moving prey. Gulls have more generalised bills that reflect their more opportunistic lifestyle.

Pursuit diving

Pursuit diving exerts greater pressures (both evolutionary and physiological) on seabirds, but the reward is a greater area in which to feed than is available to surface feeders. Propulsion underwater can be provided by wings (as used by penguins, auks, diving petrels, and some other species of petrel) or feet (as used by cormorants, grebes, loons and several types of fish-eating ducks). Wing-propelled divers are generally faster than foot-propelled divers. In both cases, the use of wings or feet for diving has limited their utility in other situations: loons and grebes walk with extreme difficulty (if at all), penguins cannot fly, and auks have sacrificed flight efficiency in favour of underwater diving. For example, the razorbill (an Atlantic auk) requires 64% more energy to fly than a petrel of equivalent size. Many shearwaters are intermediate between the two, having longer wings than typical wing-propelled divers but heavier wing loadings than the other surface-feeding procellariids, leaving them capable of diving to considerable depths while still being efficient long-distance travellers. The most impressive diving exhibited by shearwaters is found in the Short-tailed Shearwater, which has been recorded diving below 70 m. Some albatross species are also capable of some limited diving, with Light-mantled Sooty Albatrosses holding the record at 12 m. Of all the wing-propelled pursuit divers, the most efficient in the air are the albatrosses, and it is no coincidence that they are the poorest divers. This is the dominant guild in polar and subpolar environments, as it is energetically inefficient in warmer waters. With their poor flying ability, many wing-propelled pursuit divers are more limited in their foraging range than other guilds, especially during the breeding season when hungry chicks need regular feeding.

Plunge diving

Gannets, boobies, tropicbirds, some terns and Brown Pelicans all engage in plunge diving, taking fast moving prey by diving into the water from flight. Plunge diving allows birds to use the energy from the momentum of the dive to combat natural buoyancy (caused by air trapped in plumage), and thus uses less energy than the dedicated pursuit divers, allowing them utilise more widely distributed food resources, for example, in impoverished tropical seas. In general, this is the most specialised method of hunting employed by seabirds; other non-specialists (such as gulls and skuas) may employ it but do so with less skill and from lower heights. In Brown Pelicans the skills of plunge diving take several years to fully develop—once mature, they can dive from 20 m (70 ft) above the water's surface, shifting the body before impact to avoid injury. It has been suggested that plunge divers are restricted in their hunting grounds to clear waters that afford a view of their prey from the air, and while they are the dominant guild in the tropics, the link between plunge diving and water clarity is inconclusive. Some plunge divers (as well as some surface feeders) are dependent on dolphins and tuna to push shoaling fish up towards the surface.

Kleptoparasitism, scavenging and predation

Ninety-five per cent of seabirds are colonial, The tropical Bonin Petrel nests during the winter to avoid competition with the more aggressive Wedge-tailed Shearwater. When the seasons overlap, the Wedge-tailed Shearwaters will kill young Bonin Petrels in order to use their burrows.
Many seabirds show remarkable site fidelity, returning to the same burrow, nest or site for many years, and they will defend that site from rivals with great vigour. Young adults breeding for the first time usually return to their natal colony, and often nest close to where they hatched. This tendency, known as philopatry, is so strong that a study of Laysan Albatrosses found that the average distance between hatching site and the site where a bird established its own territory was 22 m; another study, this time on Cory's Shearwaters nesting near Corsica, found that of nine out of 61 male chicks that returned to breed at their natal colony bred in the burrow they were raised in, and two actually bred with their own mother.
Colonies are usually situated on islands, cliffs or headlands which land mammals have difficulty accessing. This is thought to provide protection to seabirds, which are often very clumsy on land. Coloniality often arises in types of bird which do not defend feeding territories (such as swifts, which have a very variable prey source); this may be a reason why it arises more frequently in seabirds.


The build-up of toxins and pollutants in seabirds is also a concern. Seabirds, being apex predators, suffered from the ravages of DDT until it was banned; among other effects, DDT was implicated in embryo development problems and the skewed sex ratio of Western Gulls in southern California. Oil spills are also a threat to seabird species, as both a toxin and because the feathers of the birds become saturated by the oil, causing them to lose their waterproofing. Oil pollution threatens species with restricted ranges or already depressed populations.


The threats faced by seabirds have not gone unnoticed by scientists or the conservation movement. As early as 1903, U.S. President Theodore Roosevelt was convinced of the need to declare Pelican Island in Florida a National Wildlife Refuge to protect the bird colonies (including the nesting Brown Pelicans), and in 1909 he protected the Farallon Islands. Today many important seabird colonies are given some measure of protection, from Heron Island in Australia to Triangle Island in British Columbia.
Island restoration techniques, pioneered by New Zealand, enable the removal of exotic invaders from increasingly large islands. Feral cats have been removed from Ascension Island, Arctic Foxes from many islands in the Aleutian Islands, and rats from Campbell Island. The removal of these introduced species has led to increases in numbers of species under pressure and even the return of extirpated ones. After the removal of cats from Ascension Island, seabirds began to nest there again for the first time in over a hundred years.
Seabird mortality caused by long-line fisheries can be greatly reduced by techniques such as setting long-line bait at night, dying the bait blue, setting the bait underwater, increasing the amount of weight on lines and by using bird scarers, and their deployment is increasingly required by many national fishing fleets. The international ban on the use of drift nets has also helped reduce the mortality of seabirds and other marine wildlife.
One of the Millennium Projects in the UK was the Scottish Seabird Centre, near the important bird sanctuaries on Bass Rock, Fidra and the surrounding islands. The area is home to huge colonies of gannets, puffins, skuas and other seabirds. The centre allows visitors to watch live video from the islands as well as learn about the threats the birds face and how we can protect them, and has helped to significantly raise the profile of seabird conservation in the UK. Seabird tourism can provide income for coastal communities as well as raise the profile of seabird conservation. For example, the Northern Royal Albatross colony at Taiaroa Head in New Zealand attracts 40,000 visitors a year.

Role in culture

Many seabirds are little studied and poorly known, due to living far out to sea and breeding in isolated colonies. However, some seabirds, particularly, the albatrosses and gulls, have broken into popular consciousness. The albatrosses have been described as "the most legendary of birds", and have a variety of myths and legends associated with them, and today it is widely considered unlucky to harm them, although the notion that sailors believed that is a myth which derives from Samuel Taylor Coleridge's famous poem, "The Rime of the Ancient Mariner", in which a sailor is punished for killing an albatross by having to wear its corpse around his neck.
Instead of the Cross the Albatross About my neck was hung
Sailors did, however, consider it unlucky to touch a storm-petrel, especially one that has landed on the ship.
Gulls are one of the most commonly seen seabirds, given their use of human-made habitats (such as cities and dumps) and their often fearless nature. They therefore also have made it into the popular consciousness - they have been used metaphorically, as in Jonathan Livingston Seagull by Richard Bach, or to denote a closeness to the sea, such as their use in the The Lord of the Rings – both in the insignia of Gondor and therefore Númenor (used in the design of the films), and to call Legolas to (and across) the sea. Other species have also made an impact; pelicans have long been associated with mercy and altruism because of an early Western Christian myth that they split open their breast to feed their starving chicks.

Seabird families

The following are the groups of birds normally classed as seabirds.
Sphenisciformes (Antarctic and southern waters; 16 species)
Procellariiformes (Tubenoses: pan-oceanic and pelagic; 93 species)
Pelecaniformes (Worldwide; 57 species)
Charadriiformes (Worldwide; 305 species, but only the families listed are classed as seabirds.)
For an alternative taxonomy of these groups, see also Sibley-Ahlquist taxonomy.


seafowl in German: Meeresvogel
seafowl in Spanish: Ave marina
seafowl in Esperanto: Marbirdoj
seafowl in French: Oiseau de mer
seafowl in Classical Chinese: 海鳥
seafowl in Ido: Mar-ucelo
seafowl in Interlingua (International Auxiliary Language Association): Ave de mar
seafowl in Hebrew: עופות ימיים
seafowl in Japanese: 海鳥
seafowl in Norwegian: Sjøfugl
seafowl in Portuguese: Ave oceânica
seafowl in Russian: Морские птицы
seafowl in Swedish: Sjöfåglar
seafowl in Ukrainian: Морські птахи
seafowl in Chinese: 海鳥
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1